Open Science Research Excellence

Hui Min Ting

Publications

2

Publications

2
16509
Comparison of Neural Network and Logistic Regression Methods to Predict Xerostomia after Radiotherapy
Abstract:

To evaluate the ability to predict xerostomia after radiotherapy, we constructed and compared neural network and logistic regression models. In this study, 61 patients who completed a questionnaire about their quality of life (QoL) before and after a full course of radiation therapy were included. Based on this questionnaire, some statistical data about the condition of the patients’ salivary glands were obtained, and these subjects were included as the inputs of the neural network and logistic regression models in order to predict the probability of xerostomia. Seven variables were then selected from the statistical data according to Cramer’s V and point-biserial correlation values and were trained by each model to obtain the respective outputs which were 0.88 and 0.89 for AUC, 9.20 and 7.65 for SSE, and 13.7% and 19.0% for MAPE, respectively. These parameters demonstrate that both neural network and logistic regression methods are effective for predicting conditions of parotid glands.

Keywords:
NPC, ANN, logistic regression, xerostomia.
1
3771
Model Parameters Estimating on Lyman–Kutcher–Burman Normal Tissue Complication Probability for Xerostomia on Head and Neck Cancer
Abstract:
The purpose of this study is to derive parameters estimating for the Lyman–Kutcher–Burman (LKB) normal tissue complication probability (NTCP) model using analysis of scintigraphy assessments and quality of life (QoL) measurement questionnaires for the parotid gland (xerostomia). In total, 31 patients with head-and-neck (HN) cancer were enrolled. Salivary excretion factor (SEF) and EORTC QLQ-H&N35 questionnaires datasets are used for the NTCP modeling to describe the incidence of grade 4 xerostomia. Assuming that n= 1, NTCP fitted parameters are given as TD50= 43.6 Gy, m= 0.18 in SEF analysis, and as TD50= 44.1 Gy, m= 0.11 in QoL measurements, respectively. SEF and QoL datasets can validate the Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC) guidelines well, resulting in NPV-s of 100% for the both datasets and suggests that the QUANTEC 25/20Gy gland-spared guidelines are suitable for clinical used for the HN cohort to effectively avoid xerostomia.
Keywords:
HN, NTCP, SEF, QoL, QUANTEC